
The PENNANT Mini-App

Charles R. Ferenbaugh
Los Alamos National Laboratory

cferenba@lanl.gov

Version 0.9 – February 2016
LA-CC-12-021

https://github.com/losalamos/PENNANT

PENNANT is an unstructured mesh physics mini-app designed for advanced architecture research. It
contains mesh data structures and a few physics algorithms adapted from the LANL rad-hydro code FLAG,
and gives a sample of the typical memory access patterns of FLAG.

Details on the performance of PENNANT can be found in [5, 6].

1 Building and running the code

1.1 Building

A simple Makefile is provided in the top-level directory for building the code. Before using it, you may
wish to edit the definitions of CXX and CXXFLAGS to specify your desired C++ compiler and flags, and
to choose between optimized/debug and serial/OpenMP/MPI builds. Then a simple “make” command will
create a build subdirectory and build the pennant binary in that directory.

PENNANT has been tested under GCC 5.1.0, PGI 15.3, and Intel 15.0.3. Building under other compilers
should require only minor changes.

1.2 Running tests

Several test problems are provided in subdirectories under the test directory. The command line

pennant testname.pnt

is used to run a test in serial mode. If running under MPI, this should be preceded by mpirun or similar
command as appropriate on your system.

The available test problems are listed in Table 1. The smaller problems run quickly and are useful for
debugging and regression tests; gold standard files are provided (see next section). The larger tests take
longer to run and are suitable for timing tests. Most of these problems have sizes chosen to match a typical
FLAG run on a single node of a cluster; the exceptions are the two Leblanc problems specifically labeled as
multi-node.

1

https://github.com/losalamos/PENNANT


Table 1: Test problems provided with PENNANT.
name # zones mesh shape zone type
Leblanc problems [1]:
leblanc 900 rectangle quad
leblancbig 230400 rectangle quad
Leblanc problems, multi-node versions:
leblancx4 3.69× 106 rectangle quad
leblancx16 5.90× 107 rectangle quad
leblancx64 9.44× 108 rectangle quad
Noh problems [7]:
nohsmall 40 radial triangle/quad
noh 3000 radial triangle/quad
nohsquare 129600 square quad
nohpoly 63001 square mostly hexagons
Sedov problems [8]:
sedovsmall 81 square quad
sedov 2025 square quad
sedovbig 291600 square quad

1.3 Test inputs and outputs

Each test problem directory contains an input file with the .pnt suffix. This is a small text file containing
input parameters for the test.

PENNANT can generate output files of two kinds. The .xy output file is a text file containing the per-
zone values of zone density, energy, and pressure. (It is modeled after a similar file generated by FLAG.)
Note that, when running under MPI, the order of the output values in this file may vary when the number of
PEs changes. For the smaller tests, two gold standard files are provided for reference. The .xy.std file
gives the expected results for a serial run (or 1-PE MPI run), while the .xy.std4 file gives expected results
for a 4-PE MPI run. (These files are identical except for the ordering of zones, which is done differently
depending on the number of PEs in use.)

There are also several graphics output files in Ensight Gold format: the main file has suffix .case, and
it refers to auxiliary files with suffixes .geo, .ze, .zp, and .zr. These can be viewed by the proprietary
Ensight1 viewer, or by open-source viewers such as ParaView2 and VisIt3. Sample outputs are shown in
Figure 1.

These outputs are off by default, but can be activated using the writexy and writegold input file
flags respectively (see next section). Note that the file writers are not optimized to work well on large
numbers of MPI ranks (this will be fixed in a future release).

1.4 Input file parameters

In most cases, there is no need for users to modify input files. However, here are a few parameters that
ambitious users might want to know about:

1http://www.ensight.com
2http://www.paraview.org
3https://wci.llnl.gov/codes/visit/home.html

2

http://www.ensight.com
http://www.paraview.org
https://wci.llnl.gov/codes/visit/home.html


(a) (b)

(c)

Figure 1: Final state of (a) nohsquare, (b) sedovbig, and (c) leblancbig problems, colored by zone density.

3



writexy (integer) If nonzero, write .xy file at end of run.

writegold (integer) If nonzero, write Ensight Gold file at end of run.

cstop (integer) Stop run when problem reaches given cycle number.

tstop (real) Stop run when problem reaches given simulation time.

chunksize (integer) Process mesh elements in chunks of given size; see section 2.3 for more details on
chunk processing. If chunksize is zero, the entire mesh is treated as a single chunk (this is the
default). Typically, for best performance, this value will be chosen so that a chunk can fit in L1 or L2
cache as appropriate; it follows that the optimal value is architecture-dependent.

meshparams (list of integers and reals) Parameters for internal mesh generator. These may be modified if
additional test cases of varying sizes are desired (e.g., for scaling studies). The format of this line is:
meshparams nzx [nzy [lenx [leny]]]
where the parameters have the following meanings:
nzx, nzy number of zones in x, y directions (no default for nzx; default nzy = nzx)
lenx, leny total length in x, y directions (default for both = 1.0, except when

meshtype = pie, in which case default for lenx = 90.0)
For the pie mesh type, x and y should be understood as θ and r respectively.

dtinit (real) Initial timestep. This shouldn’t need to be changed unless the mesh has been changed (see
meshparams above). As a rule of thumb, if the resolution of the problem is increased by a factor of
r in each direction, dtinit must decrease by a factor of r.

2 Data structure details

2.1 Mesh data structures

PENNANT is designed to use standard finite-volume meshes similar to those used by many common physics
solvers. In particular, PENNANT supports 2-D unstructured meshes composed of arbitrary polygons.

The PENNANT mesh data structures are a subset of those used by FLAG. These are implemented in the
Mesh class. FLAG supports 1-, 2-, and 3-D meshes with various geometries; for simplicity, PENNANT is
restricted to the 2-D, cylindrical geometry case.

The PENNANT terminology for entities within a mesh is shown in Figure 2. The basic mesh elements
in 0, 1, and 2 dimensions are called points, edges, and zones respectively. PENNANT also uses two types of
sub-zone entities. Within any given zone, a side is a triangle whose vertices are two consecutive boundary
points of the zone together with the zone center. A corner is a quadrilateral whose vertices are one boundary
point of a zone, the midpoints of the two adjoining edges, and the zone center.

For each entity type, the first letter of its name is used as an identifier for variables associated with it.
For example, px is an array of point coordinates, and zvol is an array of zone volumes. There are scalar
variables of the form numX which give the number of X’s in the problem: nump is the number of points,
and so on.

PENNANT also stores various mapping arrays from sides to other entity types. These are shown in
Figure 3. Given a side s, the following mapping arrays are available:

• mapsz gives the zone z of which s is a subregion.

4



Figure 2: PENNANT terminology for mesh entities.

Figure 3: Various side map arrays supported by PENNANT.

• mapse gives the edge e on the boundary of s.
• mapsp1 and mapsp2 give the two mesh points p1 and p2 on the boundary of s. It is assumed that

the mesh is oriented according to a right-hand rule, so that the edge from p1 to p2 is always in a
counter-clockwise direction relative to the zone.

• mapss3 and mapss4 give the two sides s3 and s4 on either side of s, where s3 is before s and s4 is
after it in a counter-clockwise traversal of the zone.

Since there is a one-to-one correspondence between sides and corners, side-to-corner arrays are not used.
By convention, the corner labeled c1 in Figure 3 has the same index as s. It follows that c2 has the same
index as s4, or mapss4[s].

The Mesh class also has methods for computing other geometry-related variables, such as edge and
zone centers, lengths, volumes, and surface vectors. The surface vector for a side s, shown by the vector S
in Figure 3, is used by force computations in the hydro algorithms described later.

5



(a) (b) (c)

Figure 4: Mesh types generated by PENNANT mesh generators: (a) rect, (b) pie, and (c) hex.

2.2 Mesh generators

PENNANT has internal mesh generation code that will generate three different types of meshes, shown in
Figure 4.

Note that the physics routines in PENNANT can process 2-D meshes of any geometry; they are not
limited to the mesh types shown here. However, the internal mesh generators are set up to also generate
domain connectivity information needed by MPI (see section 2.4), which would be difficult to generate for
arbitrary meshes.

2.3 Chunk processing

The PENNANT Mesh class has been set up to support computation on chunks of the mesh in parallel. This
is used to implement OpenMP and CUDA versions of the code and should lend itself to other task-based
approaches as well. (MPI parallelism is implemented differently, using geometric domain decomposition, as
described in section 2.4). The maximum chunk size is controlled by the input file parameter chunksize.

In the current chunking approach, the lists of points and zones are simply divided into chunks of size
chunksize (except for the final, leftover chunk). The list of sides is handled similarly, except that the size
of each individual chunk is rounded down slightly if necessary so that each zone has all of its sides in the
same chunk. For each chunk, the first and last indices of the chunk are stored. (Note that last is actually one
index beyond the end of the chunk, in a similar manner to STL iterators, so that the sides in a side chunk are
those with sfirst ≤ s < slast.) The total numbers of each type of chunk (numXch, where X may be p, s, or
z) are also stored.

Then, nearly all of the routines in the main hydro cycle have been modified to take as input first and last
indices of the appropriate mesh entity. This allows the hydro processing to be divided into five phases, two
on point chunks, two on side chunks, and one on zone chunks. Within each phase, all chunks are independent
and can be processed in parallel. See Hydro::doCycle() for the complete code flow.

A few of the helper routines, particularly in the QCS class, use scratch arrays the size of the chunk
currently being processed. The prefix s0 is used for an array with one entry per side in the current chunk,
with prefixes c0 and z0 used similarly for corners and zones respectively.

6



Figure 5: Example MPI decomposition of a mesh. Master points are shown as blue, slaves as red, and
proxies as white. MPI communications between slaves and proxies are shown as arrows.

2.4 Domain decomposition

The MPI implementation of PENNANT uses domain decomposition to put a geometrically contiguous sub-
set of the mesh on each processor. It also generates information to allow point data to be communicated
across processors, as described below.

PENNANT follows FLAG in assigning each zone, corner and side to a single MPI rank when decom-
posing the mesh. However, any point on a rank boundary is replicated on each rank which needs it; see
Figure 5 for an illustration. For any duplicated point, one of its instances is designated as the master, and
the others are its slaves. (The current PENNANT mesh generators use the convention that the master point
is the one on the lowest-numbered MPI rank.) When it is time to sum a quantity from corners to points, the
summation is first done for on-processor corners in Mesh::sumOnProc. Then the summation is extended
across processors in three stages:

1. In Mesh::parallelGather, slave point values are assembled into messages, and sent to corre-
sponding proxy points on the same rank as their masters (using MPI).

2. In Mesh::parallelSum, master points sum their own values and all proxy values, and store sum
at master and all proxies (on-processor only, no MPI is used).

3. In Mesh::parallelScatter, the updated proxy point values are assembled into messages and
sent back to their corresponding slave points (using MPI).

7



Table 2: Basic data flow for FLAG/PENNANT hydrodynamics.
step main inputs main outputs
Predictor step:
1. Update mesh point velocity, position point position (half-advanced)
1a. Update mesh geometry point position side and zone volume; zone density;

side surface vector
2. Compute point masses zone density, volume;

side mass fraction
point mass

3. Update thermodynamic state zone density, specific
energy, work rate

zone pressure, sound speed

4. Compute forces side surface vector;
zone pressure

side and point force

4a. Apply boundary conditions point force, velocity point force, velocity (constrained)
5. Compute accleration point force point acceleration
Corrector step:
6. Update mesh point acceleration,

velocity, position
point velocity, position (fully advanced)

6a. Update mesh geometry point position side and zone volume
7. Compute work point position, velocity;

side force
zone work, work rate, total energy

8. Update zone state variables zone volume, mass,
total energy

zone density, specific energy

3 Physics details

3.1 Basic hydro algorithms

PENNANT provides a subset of the compatible Lagrangian staggered grid hydrodynamics (SGH) algorithms
implemented in FLAG and described in [3]. These are implemented in the Hydro class. An outline of the
main steps is given in Table 2.

The PENNANT hydro algorithm is a Lagrangian method, meaning that the computational mesh moves
with the material as the problem state advances. This implies that the mass and material type within each
zone are constant throughout the problem, but the zone’s position and shape will change over time.

It is also a staggered-grid method, meaning that mesh positions and related variables (velocity, accel-
eration, etc.) are stored on points, while most state variables (density, energy, pressure, etc.) are stored on
zones. Therefore, the calculation must frequently use values of zone-based variables to compute point-based
results, or vice-versa. In Table 2, such results are shown in bold. (Note that this is true for five of the 11
steps shown.)

To facilitate these calculations, many of the calculation loops are done over sides, and some intermediate
variables are stored on sides. This works since each side can be easily correlated to its corresponding zone
and points using the mapping arrays in the Mesh object. A few routines use corners in a similar manner.

PENNANT hydro uses a predictor-corrector time integration method. Each cycle can be broken into two
steps, shown in the table. The cycle begins with all problem state defined for the beginning of the timestep.
In the predictor step, some variables are advanced to the middle of the timestep, in order to compute half-
advanced point acceleration values. In the corrector step, the new accelerations are then used to advance all

8



Table 3: Examples of PENNANT variables and their dependence on timestep.
Part of time step

quantity begin middle end
point coordinate px0 pxp px
point velocity pu0 pu
point acceleration pap
point force pf
point mass pmaswt

zone center coordinate zxp zx
zone mass zm
zone volume zvol0 zvolp zvol
zone density zrp zr
zone specific energy ze

side volume svolp svol
side surface vector ssurfp

variables to the end of the timestep.
To implement the predictor-corrector scheme, it is necessary to store multiple values of some of the

problem variables. This is done using the following notation convention:

• suffix 0 = the beginning of the timestep (“cycle n”)
• suffix p = half-way through the timestep (“cycle n + 1/2”)
• no suffix = completion of the timestep (“cycle n + 1”)

Some examples are shown in Table 3. Note that some entries in the table are blank, since not all quantities
are needed at all times.

3.2 Energy check

The hydro algorithms in PENNANT are intended to conserve total energy as a simulation progresses. How-
ever, in the 2D cylindrical geometry used by PENNANT, the conservation is not always exact. An energy
check diagnostic is printed at the beginning and end of each run to verify conservation. For the leblanc
problems, energy is typically conserved to within the accuracy of the printout (seven decimal places). For
other problems, there can be a relative error of about 2× 10−4 (for the noh problems) or 2× 10−2 (for the
sedov problems). These errors are due to limitations of the numerical algorithms in the cylindrical case,
and should not change significantly between different platforms or implementations of PENNANT.

3.3 Material model

PENNANT provides finite-volume, arbitrary-polygon cells with a gas material model, implemented in the
PolyGas class. This class includes code to compute a simple gamma-law gas equation of state, and to
compute the resulting pressure-based forces.

9



3.4 Subzonal pressures

PENNANT provides the Temporary Triangular Subzoning (TTS) algorithm described in [4, 9]. This is
implemented in the TTS class. This prevents certain kinds of distortions of zones, such as “hourglassing,”
by estimating a pressure for each side, and adding a force to each side based on the difference between the
zone and side pressures.

Note to FLAG users: The FLAG implementation of TTS contains, in addition to the subzonal pressure
treatment, an artificial viscosity algorithm based on the subzonal pressures; the artificial viscosity is not part
of the standard TTS description in the references. Only the subzonal pressure part of TTS is implemented
in PENNANT.

3.5 Artificial viscosity

PENNANT provides the tensor artificial viscosity algorithm of Campbell and Shashkov, described in [2].
This is implemented in the QCS class. (The symbol q is traditionally used to denote artificial viscosity, hence
the Q prefix on the class name.) Artificial viscosity is a fictitious term commonly introduced into fluid flow
equations to correctly handle shock regions with large discontinuities in the problem state variables.

Acknowledgements

Thanks to Mikhail Shashkov and the ASCR “Mimetic Methods for PDEs” project, and the ASC Hydrody-
namics project, for providing support for this work. Thanks to Pat McCormick and the ASC Programming
Models project for providing some additional support for development of the MPI version. Thanks to Sri-
ram Swaminarayan and the ASC Code Strategies for Emerging Platforms project for supporting PENNANT
modifications for the APEX NERSC-9/Crossroads procurement.

Thanks also to the Lagrangian Applications Project members who have contributed to the FLAG code;
parts of the PENNANT code and documentation are adapted from their work. And finally, thanks to the
participants in the Intel EPOCH workshop in the summer of 2012; several optimization ideas from that
workshop have been incorporated into subsequent PENNANT versions.

References

[1] D.J. Benson. Momentum advection on a staggered mesh. J. Comput. Phys, 100:143–162, 1992.

[2] J. Campbell and M. Shashkov. A tensor artificial viscosity using a mimetic finite difference algorithm.
J. Comput. Phys, 172:739–765, 2001.

[3] E.J. Caramana, D.E. Burton, M. Shashkov, and P.P. Whalen. The construction of compatible hydrody-
namics algorithms utilizing conservation of total energy. J. Comput. Phys., 146:227–262, 1998.

[4] E.J. Caramana and M.J. Shashkov. Elimination of artificial grid distortion and hourglass-type motions
by means of Lagarangian subzonal masses and pressures. J. Comput. Phys., 142:521–561, 1998.

[5] C. Ferenbaugh. PENNANT: An unstructured mesh mini-app for advanced architecture research. Con-
currency Computat.: Pract. Exper., 27:4555–4572, 2015.

10



[6] C. Ferenbaugh. Performance evaluation of unstructured mesh physics on advanced architectures. Pro-
ceedings of IEEE Cluster 2015, Chicago, IL, 721-728, 2015.

[7] W.F. Noh. Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux.
J. Comput. Phys., 72:78, 1987.

[8] L.I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press, New York, 1959.

[9] K.B. Wallick. Temporary triangular subzoning (TTS), in REZONE: A method for automatic rezoning
in two-dimensional lagrangian hydrodynamics problems. Technical Report LA-10829-MS, Los Alamos
National Laboratory, Los Alamos, NM 1987.

A Version Log

0.9 February 2016
Added leblancx64 problem. Added energy check diagnostic for verifying large problems.

0.8 November 2015
Added multi-node test problems. Added information for APEX benchmark testing.

0.7 February 2015
Further optimizations for MPI+OpenMP.

0.6 February 2014
First MPI version. MPI capability is working and mostly optimized; MPI+OpenMP is working but
needs optimization. Replaced GMV mesh reader with internal mesh generators. Added QCS velocity
difference routine to reflect a recent bugfix in FLAG. Increased size of big test problems.

0.5 May 2013
Further optimizations.

0.4 January 2013
First open-source release. Fixed a bug in QCS and added some optimizations. Added Sedov and
Leblanc test problems, and some new input keywords to support them.

0.3 July 2012
Added OpenMP pragmas and point chunk processing. Modified physics state arrays to be flat arrays
instead of STL vectors.

0.2 June 2012
Added side chunk processing. Miscellaneous minor cleanup.

0.1 March 2012
Initial release, internal LANL only.

11



B Copyright and License Information

Copyright c©2012, Los Alamos National Security, LLC. All rights reserved.
Copyright 2012. Los Alamos National Security, LLC. This software was produced under U.S. Govern-

ment contract DE-AC52-06NA25396 for Los Alamos National Laboratory (LANL), which is operated by
Los Alamos National Security, LLC for the U.S. Department of Energy. The U.S. Government has rights to
use, reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR LOS ALAMOS NA-
TIONAL SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified to produce derivative works,
such modified software should be clearly marked, so as not to confuse it with the version available from
LANL.

Additionally, redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of Los Alamos National Security, LLC, Los Alamos National Laboratory, LANL,
the U.S. Government, nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND CON-
TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOS ALAMOS NATIONAL SECU-
RITY, LLC OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

12


	Building and running the code
	Building
	Running tests
	Test inputs and outputs
	Input file parameters

	Data structure details
	Mesh data structures
	Mesh generators
	Chunk processing
	Domain decomposition

	Physics details
	Basic hydro algorithms
	Energy check
	Material model
	Subzonal pressures
	Artificial viscosity

	Version Log
	Copyright and License Information

